The Apache Tomcat Servlet/JSP Container

Apache Tomcat 7

Version 7.0.64, Aug 19 2015
Apache Logo


User Guide


Apache Tomcat Development

JNDI Datasource HOW-TO

Table of Contents

JNDI Datasource configuration is covered extensively in the JNDI-Resources-HOWTO. However, feedback from tomcat-user has shown that specifics for individual configurations can be rather tricky.

Here then are some example configurations that have been posted to tomcat-user for popular databases and some general tips for db usage.

You should be aware that since these notes are derived from configuration and/or feedback posted to tomcat-user YMMV :-). Please let us know if you have any other tested configurations that you feel may be of use to the wider audience, or if you feel we can improve this section in anyway.

Please note that JNDI resource configuration changed somewhat between Tomcat 5.0.x and Tomcat 5.5.x. You will most likely need to modify older JNDI resource configurations to match the syntax in the example below in order to make them work in Tomcat 7.x.x.

Also, please note that JNDI DataSource configuration in general, and this tutorial in particular, assumes that you have read and understood the Context and Host configuration references, including the section about Automatic Application Deployment in the latter reference.

DriverManager, the service provider mechanism and memory leaks

java.sql.DriverManager supports the service provider mechanism. This feature is that all the available JDBC drivers that announce themselves by providing a META-INF/services/java.sql.Driver file are automatically discovered, loaded and registered, relieving you from the need to load the database driver explicitly before you create a JDBC connection. However, the implementation is fundamentally broken in all Java versions for a servlet container environment. The problem is that java.sql.DriverManager will scan for the drivers only once.

The JRE Memory Leak Prevention Listener that is included with Apache Tomcat solves this by triggering the drivers scan during Tomcat startup. This is enabled by default. It means that only libraries visible to the listener such as the ones in $CATALINA_BASE/lib will be scanned for database drivers. If you are considering disabling this feature, note that the scan would be triggered by the first web application that is using JDBC, leading to failures when this web application is reloaded and for other web applications that rely on this feature.

Thus, the web applications that have database drivers in their WEB-INF/lib directory cannot rely on the service provider mechanism and should register the drivers explicitly.

The list of drivers in java.sql.DriverManager is also a known source of memory leaks. Any Drivers registered by a web application must be deregistered when the web application stops. Tomcat will attempt to automatically discover and deregister any JDBC drivers loaded by the web application class loader when the web application stops. However, it is expected that applications do this for themselves via a ServletContextListener.

Database Connection Pool (DBCP) Configurations

The default database connection pool implementation in Apache Tomcat relies on the libraries from the Apache Commons project. The following libraries are used:

  • Commons DBCP
  • Commons Pool

These libraries are located in a single JAR at $CATALINA_HOME/lib/tomcat-dbcp.jar. However, only the classes needed for connection pooling have been included, and the packages have been renamed to avoid interfering with applications.

DBCP 1.4 provides support for JDBC 4.0.


See the DBCP documentation for a complete list of configuration parameters.

Preventing database connection pool leaks

A database connection pool creates and manages a pool of connections to a database. Recycling and reusing already existing connections to a database is more efficient than opening a new connection.

There is one problem with connection pooling. A web application has to explicitly close ResultSet's, Statement's, and Connection's. Failure of a web application to close these resources can result in them never being available again for reuse, a database connection pool "leak". This can eventually result in your web application database connections failing if there are no more available connections.

There is a solution to this problem. The Apache Commons DBCP can be configured to track and recover these abandoned database connections. Not only can it recover them, but also generate a stack trace for the code which opened these resources and never closed them.

To configure a DBCP DataSource so that abandoned database connections are removed and recycled add the following attribute to the Resource configuration for your DBCP DataSource:


When available database connections run low DBCP will recover and recycle any abandoned database connections it finds. The default is false.

Use the removeAbandonedTimeout attribute to set the number of seconds a database connection has been idle before it is considered abandoned.


The default timeout for removing abandoned connections is 300 seconds.

The logAbandoned attribute can be set to true if you want DBCP to log a stack trace of the code which abandoned the database connection resources.


The default is false.

MySQL DBCP Example
0. Introduction

Versions of MySQL and JDBC drivers that have been reported to work:

  • MySQL 3.23.47, MySQL 3.23.47 using InnoDB,, MySQL 3.23.58, MySQL 4.0.1alpha
  • Connector/J 3.0.11-stable (the official JDBC Driver)
  • mm.mysql 2.0.14 (an old 3rd party JDBC Driver)

Before you proceed, don't forget to copy the JDBC Driver's jar into $CATALINA_HOME/lib.

1. MySQL configuration

Ensure that you follow these instructions as variations can cause problems.

Create a new test user, a new database and a single test table. Your MySQL user must have a password assigned. The driver will fail if you try to connect with an empty password.

mysql> GRANT ALL PRIVILEGES ON *.* TO javauser@localhost
mysql> create database javatest;
mysql> use javatest;
mysql> create table testdata (
    ->   id int not null auto_increment primary key,
    ->   foo varchar(25),
    ->   bar int);
Note: the above user should be removed once testing is complete!

Next insert some test data into the testdata table.

mysql> insert into testdata values(null, 'hello', 12345);
Query OK, 1 row affected (0.00 sec)

mysql> select * from testdata;
| ID | FOO   | BAR   |
|  1 | hello | 12345 |
1 row in set (0.00 sec)

2. Context configuration

Configure the JNDI DataSource in Tomcat by adding a declaration for your resource to your Context.

For example:


    <!-- maxActive: Maximum number of database connections in pool. Make sure you
         configure your mysqld max_connections large enough to handle
         all of your db connections. Set to -1 for no limit.

    <!-- maxIdle: Maximum number of idle database connections to retain in pool.
         Set to -1 for no limit.  See also the DBCP documentation on this
         and the minEvictableIdleTimeMillis configuration parameter.

    <!-- maxWait: Maximum time to wait for a database connection to become available
         in ms, in this example 10 seconds. An Exception is thrown if
         this timeout is exceeded.  Set to -1 to wait indefinitely.

    <!-- username and password: MySQL username and password for database connections  -->

    <!-- driverClassName: Class name for the old mm.mysql JDBC driver is - we recommend using Connector/J though.
         Class name for the official MySQL Connector/J driver is com.mysql.jdbc.Driver.

    <!-- url: The JDBC connection url for connecting to your MySQL database.

  <Resource name="jdbc/TestDB" auth="Container" type="javax.sql.DataSource"
               maxActive="100" maxIdle="30" maxWait="10000"
               username="javauser" password="javadude" driverClassName="com.mysql.jdbc.Driver"

3. web.xml configuration

Now create a WEB-INF/web.xml for this test application.

<web-app xmlns=""
  <description>MySQL Test App</description>
      <description>DB Connection</description>
4. Test code

Now create a simple test.jsp page for use later.

<%@ taglib uri="" prefix="sql" %>
<%@ taglib uri="" prefix="c" %>

<sql:query var="rs" dataSource="jdbc/TestDB">
select id, foo, bar from testdata

    <title>DB Test</title>


<c:forEach var="row" items="${rs.rows}">
    Foo ${}<br/>
    Bar ${}<br/>


That JSP page makes use of JSTL's SQL and Core taglibs. You can get it from Apache Tomcat Taglibs - Standard Tag Library project — just make sure you get a 1.1.x or later release. Once you have JSTL, copy jstl.jar and standard.jar to your web app's WEB-INF/lib directory.

Finally deploy your web app into $CATALINA_BASE/webapps either as a warfile called DBTest.war or into a sub-directory called DBTest

Once deployed, point a browser at http://localhost:8080/DBTest/test.jsp to view the fruits of your hard work.

Oracle 8i, 9i & 10g
0. Introduction

Oracle requires minimal changes from the MySQL configuration except for the usual gotchas :-)

Drivers for older Oracle versions may be distributed as *.zip files rather than *.jar files. Tomcat will only use *.jar files installed in $CATALINA_HOME/lib. Therefore or will need to be renamed with a .jar extension. Since jarfiles are zipfiles, there is no need to unzip and jar these files - a simple rename will suffice.

For Oracle 9i onwards you should use oracle.jdbc.OracleDriver rather than oracle.jdbc.driver.OracleDriver as Oracle have stated that oracle.jdbc.driver.OracleDriver is deprecated and support for this driver class will be discontinued in the next major release.

1. Context configuration

In a similar manner to the mysql config above, you will need to define your Datasource in your Context. Here we define a Datasource called myoracle using the thin driver to connect as user scott, password tiger to the sid called mysid. (Note: with the thin driver this sid is not the same as the tnsname). The schema used will be the default schema for the user scott.

Use of the OCI driver should simply involve a changing thin to oci in the URL string.

<Resource name="jdbc/myoracle" auth="Container"
              type="javax.sql.DataSource" driverClassName="oracle.jdbc.OracleDriver"
              username="scott" password="tiger" maxActive="20" maxIdle="10"
2. web.xml configuration

You should ensure that you respect the element ordering defined by the DTD when you create you applications web.xml file.

 <description>Oracle Datasource example</description>
3. Code example

You can use the same example application as above (asuming you create the required DB instance, tables etc.) replacing the Datasource code with something like

Context initContext = new InitialContext();
Context envContext  = (Context)initContext.lookup("java:/comp/env");
DataSource ds = (DataSource)envContext.lookup("jdbc/myoracle");
Connection conn = ds.getConnection();
0. Introduction

PostgreSQL is configured in a similar manner to Oracle.

1. Required files

Copy the Postgres JDBC jar to $CATALINA_HOME/lib. As with Oracle, the jars need to be in this directory in order for DBCP's Classloader to find them. This has to be done regardless of which configuration step you take next.

2. Resource configuration

You have two choices here: define a datasource that is shared across all Tomcat applications, or define a datasource specifically for one application.

2a. Shared resource configuration

Use this option if you wish to define a datasource that is shared across multiple Tomcat applications, or if you just prefer defining your datasource in this file.

This author has not had success here, although others have reported so. Clarification would be appreciated here.

<Resource name="jdbc/postgres" auth="Container"
          type="javax.sql.DataSource" driverClassName="org.postgresql.Driver"
          username="myuser" password="mypasswd" maxActive="20" maxIdle="10" maxWait="-1"/>
2b. Application-specific resource configuration

Use this option if you wish to define a datasource specific to your application, not visible to other Tomcat applications. This method is less invasive to your Tomcat installation.

Create a resource definition for your Context. The Context element should look something like the following.


<Resource name="jdbc/postgres" auth="Container"
          type="javax.sql.DataSource" driverClassName="org.postgresql.Driver"
          username="myuser" password="mypasswd" maxActive="20" maxIdle="10"
3. web.xml configuration
 <description>postgreSQL Datasource example</description>
4. Accessing the datasource

When accessing the datasource programmatically, remember to prepend java:/comp/env to your JNDI lookup, as in the following snippet of code. Note also that "jdbc/postgres" can be replaced with any value you prefer, provided you change it in the above resource definition file as well.

InitialContext cxt = new InitialContext();
if ( cxt == null ) {
   throw new Exception("Uh oh -- no context!");

DataSource ds = (DataSource) cxt.lookup( "java:/comp/env/jdbc/postgres" );

if ( ds == null ) {
   throw new Exception("Data source not found!");
Non-DBCP Solutions

These solutions either utilise a single connection to the database (not recommended for anything other than testing!) or some other pooling technology.